ASYMPTOTIC FORM OF THE PROBLEM OF NONSYMMETRICAL
PROPER VIBRATIONS OF A CIRCULAR-CONICAL SHELL

V. M., Kornev and L. I. Shkutin UDC 539.38

The problem concerning nonsymmetric proper vibrations of a circular-conical shell with a
veriex is separated into two parts, one being the determination of an edge-effect type of
solution, and the other being the determination of a more slowly varying solution. The
ranges of wavelengths for which the separation in question becomes asymptotically accurate
as the thickness of the shell tends to zero are indicated. The first solution is written down
explicitly; the second is obtained for a free and for a swivel-supported boundary by numer-
ical methods., The numerical solution indicates that the system of equations governing the
slowly varying part of the solution has a winding point of a rather complicated structure.

1. We describe the proper vibrations of a circular-conical shell made of a homogeneous isotropic
elastic material by V. Z. Vlasov's [1, pp. 253, 368] system of two differential equations for the stress func-
tion v(x, y, t) and the deformation function w(x, y, t) (x € [0, ¢] and y € [0, 27} are the meridional and angular
coordinates on the middle surface and t is the time). We represent the well-known expressions for the
longitudinal stresses Ny, S, Ny and the flexural deformations 7y, 7, ®, in terms of the functions v, w in the
form

N, = — BR2 (D2 + ¢ D)), S=BR™3 (D, — q) D,v,
N,=— BRD %
%, = — R2(PDS? + gDy) w,v = — R (Dy — ¢) Dow, %, = — R~D,2w
(B=CER, C=h]VIZU=¥))
(=l =alz, u=q{®)=1/x, a=1/sin6). (1.1)

Here E is the elastic modulus, v is the coefficient of transverse expansion of the material, h is the
constant thickness, R is the radius of the base of the shell, D, and D, are operators denoting single dif-
ferentiations with respect to the coordinates x and y, respectively, and 8 is the angle that the generators
of the cone make with the axis of rotation.

At the vertex (x=0) of the shell we require that the static and geometrical characteristics of the de~
formation, determined by expressions (1.1), be finite, and at its boundary (x=a) we prescribe the following
boundary conditions (M, is the meridional bending moment and Q, is the meridional transverse stress):

Ny=0,8=0 M =00 =00 w=0 (1.2)

One of these two systems of conditions determines a free boundary (the case Q;=0), while the other
(w=0) determines a variant of the case of a swivel-supported boundary. '

The problem consists of the search for special solutions of the original system, having the form

Uy (1‘, Y, t) = Qn (x) \pn (Z/v t)v Wy (x’ Y t) = %n (*Z) ‘pn (Z/, t)v
Vo (y,8) = exp (iny + i) . (1.3)

where n is an integer, w is a real number, and i =v ~—1,

Insertion of expressions (1.3) into V. Z. Vlasov's equations results in the following system of two
ordinary differential equations for the functions ¢, () and x, (x):

‘ Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 135~
142, March-April, 1973, Original article submitted January 21, 1972,
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Py - 21Dy = 0, 2lDg*@y — (Pp—A) %o =0
(Py = p2P 2(4) — 2pp 12 P1(2) + w214, P, 2(4) = Q(z)Q&), Pl(z) —0.5 (Q(ﬂ) 4 12Q®p)
Q@ =D+ D1, A =20pR*/p2E cos®, we=2C/RcosH, B, = pn?) (]_,4)

where p is the density of the material, and indices in parentheses indicate the order of the differential oper-
ator,

Equations (1.4) have a regular singularity at zero. Only those of their solutions that are analytic at
x=0 have physical meaning, From (1.2) we have for the boundary conditions at the point x=¢

=0, Dipn=0, G®p=0, 13— (1 ~7)G®y, =0
6@ =Dz +vuD1, GP =Di(WP® —p 1) —p B (1 —v) (D1 — qu) 1.5)

Here an auxiliary parameter, assuming the values 0 and 1, has been introduced. For the cases when
v =0 we have Q,=0, i.e., a free boundary, and in the other case we have w=0, i.e., a swivel-supported
boundary.

Solution of the problem on vibrations of the shell under consideration involves the determination of
those positive eigenvalues }, (m=1, 2, 3,...) of the system (1.4) which correspond to the eigenfunctions
@nm and Xpm, Satisfying the required conditions.

2. We restrict the range of values of the geometrical parameter p by the condition u?<« 1, thereby
excluding shells with very mild slopes from consideration. At the same time the quantity “nz is not nec-
essarily small, for the number n can be arbitrarily large. We assume [2, 3] that

n=Cu (@30, Com1) . 2.1

The system (1.4) consists of equations with a small parameter multiplying the highest-order deriva-
tives. For u=0 it determines a certain degenerate system, which does not in general coincide with the sys-
tem of the moment-free theory, For values o > 1/2 the degenerate system is trivial. Setting this case aside
for the present, we restrict values of the parameter a in (2.1) by the condition

0<<a<<?, (2.2)
In this domain we determine a system of equations that is shortened as compared to (1.4)
PPo.° + 21D%x,° =0, 21Dy%p,° — (P® —A°) x> =0
‘ (PO = —2pp, BP® + p 219 2.3)

which differs from the degenerate case only in terms that vanish for u—0. However, thanks to these terms,
it preserves the same singularity, and consequently the same character of the solution at zero as is pos-
sessed by the full system (1.4).

The shortened system (2.3) is of fourth order. This is the same order as that of the system of the
moment-free theory, which follows from (2.3) when P@ =0, In the transition from (1.4) to (2.3) we dropped
the highest-order derivatives with small parameters — those terms which generate solutions of the edge-

effect type.

From results of [4] it follows that at a sufficient distance from the point x =¢ the solution of the short-
ened system determines the solution of the full system within an error of order not exceeding u?. In the
neighborhood of the point x =, however, the difference may turn out to be substantial in view of the fact
that the solution of the shortened system does not have a sufficient degree of arbitrariness for the satis-
faction of all the boundary conditions. Discrepancies that arise can be compensated by solutions of the
edge-effect type.

To develop such solutions we "freeze' the coefficients of Eqs. (1.4) at some point x=£(0 < £ < a)(see
[5]). As a result, we have a system of equations with constant coefficients

Puzy + 20:Dy%, = 0, 21:D1°@n — (Ppg — M) %' =0
Introducing a function z,(x), which can be differentiated a sufficient number of times and is such that
On = — 2D ?z,, o0 = Pyzz, (2.4).

we reduce this system to one eight-order differential equation
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QE (Dl)zn = ?“M'nzldzn
Qs (Dy) = p*Qf — Apu, 2 QF + (40% + Bulp, 2l — hp?) QF
k-1

— 2l 2t — ) O + il 0P =D+ X gs® D, 2.5)

=0

it being possible that certain of the coefficients s depend on positive powers of the parameter py.
We require that the condition
G = 41* + 6p%p 204 — Au2 > O(D) (2.6)
holds over the entire segment 0 =x =g,

Then the degenerate operator Qg (D) will be of fourth order for any ¢ in the interval 0<% <4q. We
ensure that this condition will be fulfilled by making the following restriction on the value of the parameter
A [6]:

A=0 @, p<?2 (2.7)
The characteristic equation Qé: (8} =0 has eight roots:
Sk (g’ 7‘" P)and Sli+4 (E’ }"7 H) = !“"_lrh‘ (Té, 7‘» P") (k = 11 2, 37 4)9

g and rk being analytic functions of the parameter u (see Lemma 1 of [5]). With an error not exceeding
the order of u,the values ry are determined from the algebraic equation

rt + g (5 =0

By virtue of (2.6) we have IRe({rk})l =0(1), so that (for fixed £) this equation determines four pair-
wise conjugate complex numbers. Two of them have negative, and two of them have positive real parts,
Therefore the degeneration of the operator Q £ (D) into an operator of fourth order is regular (in the sense
of [5]) for any 0<£& <a,

To each of the values ry there corresponds the particular solution
2z (@) = exp (7 () 2)

of Eq. (2.5). In terms of it we also determine a particular solution of the original system (1.4) in the neigh-
borhood of the point x =£ with the aid of Eq. (2.4). Let ry and r, have positive, and ry and r; have negative
real parts. With £ =a solutions that decrease with distance from the boundary correspond to the roots u"1r1
and u'irz, while those that increase correspond to ;fir3 and u"1r4. Consequently, only the first two solu-
tions have the character of an edge effect. Therefore the general solution of the edge-effect type has the
form

tna = 2 Crexp (Wi (a) (v — a))

h=1
in the neighborhood of the point x =a.
The functions that correspond to this
@pf = = 20250, Yo = PpaZn, (2.8)
describe the rapidly-varying part of the solution of system (1.4).
According to a theorem on asymptotic representation [4] we have
P =M A+ 10m,  Pum = Pum” + Q! - Wams  Ham = Xom” + X! T Wilam (2.9)

if only the functions ¢pm© ""anI and xnm® + XnmI satisfy the boundary conditions (1.5) (Am® is a simple
eigenvalue of the shortened system, ‘ano and Xnmo are eigenfunctions, qonmI and XnmI are edge-effect
types of solutions answering to the value 7\=7\m°, and, in order of magnitude, the norm of the quantities
Sms € nm» Tnm G0es not exceed the terms of the other term standing ahead of them in the corresponding
expressions). There is the possibility of satisfying all the boundary conditions, as these functions contain
four arbitrary constants: the solution of the system (2.3}, subjected to the condition of analyticity at zero,
gives two of them, and the solution of (2.8) gives the other two.

We shall not attempt to separate the four conditions (1.5) into two pairs of such a character that, when
one pair is assigned to the shortened system (2.3) and the other to the equation (2.5) for the edge effects,
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the solutions of the equations can be determined sequentially without violating the asymptotic representa-
tion (2.9).

To separate out those conditions to which the general solution of the edge-effect type must be sub-
jected we make a substitution of (2.4) into (1.5). Then the boundary conditions at the point x=a assume the
form

Az, =0, Az, =0, Az, =0, 4, (v)2, =0
(r=0,1)
(41=Ds, Ag=Dp, As=GCPPY, Au(n)=[r—(U—1CP]PY) (2.10)

As the coefficient of the last two boundary operators depend on the small parameter p, we use a
modification [3] of the well-known rule for separating boundary conditions [4, 7].

If the boundary conditions have the form

APz = 2a1D92_0 G=12,....1 (2.11)
=9
with a; =0(uaij), then, first of all, they must not contain a small parameter raised to a negative power,
1
and this parameter must not be a common factor of some of the conditions. In other words, Eq. (2.11) must
be replaced by

l.l:_ai A§k)z = 0, COy == infj (11']') (2-12)
Then the characteristic exponent Bij of each term of (2.12) must be determined by the formula
Bis =7+ o —ay

The boundary conditions have a canonical form if each of them is solved for the term with the largest
characteristic exponent B; = sup; (Bif) and if all of them are arranged in the order of strict increase intheir
largest exponents. After the canonical form of the boundary conditions has been established, their separa-
tion is carried out according to the rule: we assign to the equation for the edge effects the same number
of boundary conditions as it has particular solutions of the edge-effect type at a given boundary point.

The remaining boundary conditions are assigned to the equations governing the slowly varying part of
the solution.

We turn immediately to condition (2.10), Assuming that
vgy (@) = vsinh = O (u=)
we determine their largest characteristic exponents

7—6x for 7T=0

Bi=2, By =3, Bs=inf( a6 — 22, 6 — 4o+ 3, 64:{4—4:1 for =1

For the values of o in (1.2) we have
Bo >4 Po>(4for y=02fr p=1}

Since, in the case y =0 (free boundary) the characteristic exponents B; and B, are always larger than
By and B,, the last two of conditions (1.5) must be assigned to Eq. (2.5) or to its solution (2.8) at the point
x=a, while the first two are assigned to the system (2.3). In the case v =1 (swivel-supported boundary)
matters are somewhat more complicated. For 0=qa«< 1/4 the boundary conditions separate in the same way
as they do for the case v =0, but for 1/4<a< /2 the characteristic exponents B8, and B3 are larger than 8, and
B4 s0 that we must assign the second and third of conditions (1 5) to (2.5), while the first and fourth are
as51gned to (2.3).

Now we can give a final formulation of separation problems, In writing down the boundary conditions
for the shortened system we replace ¢, with 9,0 and x, with x,° in the corresponding conditions (1.5).
This means that at the point x=a

°=0, Di9,°=0 for y=0, 0<Ca<andfor ¢ —1, 0oy, (2.13)

o:O xnC«:O for 7_1 1/4<(1<1/n (2.14)
(as before, we require analyticity of the functions ¢ O and x,° at zero), We obtain the boundary conditions
for the edge-effect type of solution (2.8) from the correspondmg conditions (1.5) by replacing ¢, with qano +
wnI and xp with x,°+ xnI As the result we have at the point x=a
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for 7=0, 0la<(/, and
@y I _ @Dy 0 a®y 1 B, o J ! = 2.
Gt = — G0y G2 it G for v=1, 0gacl, (2.15)

Dy = — Dagp®, GVl = =GP0 for v =1, Lo, (2.16)

From the asymptotic representation (2.9) it follows that when conditions (1.5) are satisfied the values
?\mo and the functions ‘p‘r)nn +Omns xgm+ X%lm determine the eigenvalues and the eigenfunctions of the full
problem within an error not exceeding the order p. If it is required only that this error vanish together
with y, that is, if one intends only that the solution have the asymptotic behavior of that of the full problem,
then the domain of values of the parameter o can be widened to the range 0=a<1, In all of this region the
characteristic equation Q¢ (s) =0 has four roots of the form u‘irk and four roots of lower order, At the
point x =g two particular solutions of the edge-effect type correspond to the first roots, Consequently the
conditions, making it possible to separate the original system of equations, are fulfilled, The question con-
cerning the separation of the boundary conditions is resolved, as above, by determining their characteristic
exponents, As we now have

s >2, By > for y=0,0 for y=1)

any of conditions (2.10), which means any of conditions (1.5), can appear as boundary conditions for the sys-
tem (2.3).

3. The existence of solutions of the system (1.4) that not only diminish rapidly, but also grow rapidly
with distance from the boundary, causes serious difficulties in the numerical integration of the system,
Difficulties of this kind arise in many boundary problems of shell theory, In some papers special methods
are applied to cope with them. Thus, to this end, the method of suppression of rapidly increasing solutions
isappliedin [8], in [9]a modification of the pivotal condensation method isused, while [10] employsthe method of
orthogonalization. All these methods enable one to widen the domain of permissible values of the param-
eter 1 to a greater or lesser degree; nevertheless they lose their effectiveness for sufficiently small values
of the parameter.

In contrast to these, the asymptotic method becomes more effective for smaller values of u. It sep-
arates out in explicit form the rapidly-varying solutions that are unfavorable from the point of view of dif-
ference approximations, and the application of numerical methods to the solution of the shortened (degen-
erate) problem causes no difficulty as its solutions are smoother. Moreover, the order of the shortened
system of equations is two less than that of the original system.

As an illustration of the statements made above concerning the character of the solution of the short-
ened problem we give the results of a numerical integration of the system (2.3) under the conditions (2.13)
and (2.14) at the point x =a and the conditions <pn°= xno at the point x=0, The results were obtained by the
pivotal condensation method [11]. As anobject forthe calculation we took a conical shell withthe geometric pa~
rameters: 6 =7/6 (i.e., a=2), u2=1/200.

The eigenvalues of the frequency parameter A°, calculated to third-place accuracy (which required
no more than 50 coordinate steps), are given in Table 1,

The first row gives values of the waveform parameter n for which calculations were performed. The
second and third rows give the first eigenvalues of the shortened problem with the boundary conditions (2.13)
and (2.14) respectively. The fourth row gives the second eigenvalues,

corresponding to the boundary conditions (2.13). All the eigenvalues

x given satisfy the condition 8<2. As n varies from 2 to 9, the param-

eter o varies within the range 0,25 < ¢ 20.65. For a shell with a free

7.5 boundary (y =0) the boundary conditions, corresponding to the short-

;f/{ 7;’/ ened system, have the form (2.13) throughout this range. Therefore,

>y all the numbers given in the second row can be understood as ap-

\
NN

INING NT7TNF g proximations to the eigenvalues of the full problem v =0, For ashell
%\\\K\' 7 with a swivel-supported boundary (y =1) the boundary conditions
N\ 0.05 have the form (2.14) in the domain 0.25<x€0.65. For a® (.25 the
\ / shortened problem does not give the asymptotic behavior of the full prob-
&w/ﬂ, lem eitherfor conditions (2 .13)7 orfor (2.14). The valuen =2 corresponds
w 4. to this value of . Consequently, in the case y =1, the approximate
eigenvalues of the full problem are the numbers in the third row,
Fig. 1 which answer to values n=3.
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Fig. 2 Fig. 3
TABLE 1 Figures 1-3 give a graphical representation of the
n 2 3 4 5 7 9 eigenfunctions corresponding to the eigenvalues in Table 1,
M° o 022 0.66 1.50 2.9 870 20.6 The curves of Fig. 1 correspond to values in the second row,
Moo oBS 185 153 8.2 29 5.9 those of Fig. 2 to values in the third row, and those of Fig. 3

to values in the fourth row., The side of the figure on which

the ordinates of the various curves are to be read off ig in-
dicated by the direction of the arrows attached to the curves, while the value of the parameter n to which a
curve corresponds is indicated by the number over the arrow.

A characteristic property of all the curves represented is the occurrence of inflection points, that is,
points on either side of which the asymptotic representation of the functions ¢,° and x,° is different. For
example, as one moves to the left of the inflection point, the functions xno, represented in Fig, 1, diminish
exponentially, while to the right of the inflection point they increase linearly with x. The inflection points
themselves are approximately determined by the intersection of the dashed lines [sic] with the axis of
abscissae, The inflection points of the functions ¢ ,° in Fig. 1 and the functions ¢4°, X in Fig. 2 separate branches
of exponential form from branches of oscillatory form, With increasing values of the parameter n the in-
flection points of both functions are displaced toward the boundary x =a, the solution becoming increasingly
localized in the neighborhood of the boundary.
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