
ASYMPTOTIC FORM OF THE PROBLEM OF NONSYMMETRICAL 

PROPER VIBRATIONS OF A CIRCULAR-CONICAL SHELL 

V.  M. K o r n e v  a n d  L .  I .  S h k u t i n  UDC 539.38 

The problem concerning nonsymmetr ic  p roper  vibrations of a c i rcu la r -con ica l  shell with a 
vertex is separated into two par ts ,  one being the determination of an edge-effect  type of 
solution, and the other being the determinat ion of a more  slowly varying solution. The 
ranges  of wavelengths for which the separat ion in question becomes asymptotical ly accurate  
as the thickness of the shell tends to zero  are  indicated. The f i rs t  solution is writ ten down 
explicitly; the second is obtained for a free and for  a swivel-supported boundary by numer -  
ical methods.  The numer ica l  solution indicates that the sys tem of equations governingthe 
slowly varying par t  of the solution has a winding point of a ra ther  complicated s t ruc ture .  

1. We descr ibe the p roper  vibrations of a c i rcu la r -con ica l  shell made of a homogeneous isotropic 
elast ic  mater ia l  by V. Z. Vlasov ' s  [1, pp. 253, 368] sys tem of two differential equations for  the s t r e ss  func- 
tion v(x, y, t) and the deformation function w(x, y, t) (x E [0, a] and y E [0, 27r] are the meridional  and angular 
coordinates on the middle surface and t is the time). We represent  the well-known express ions  for  the 
longitudinal s t r e s s e s  N 1, S, N 2 and the flexural deformations n l, % ~2 in t e r m s  of the functions v, w in the 
fo rm 

N1 : - -  B R  -2(12D22 + qlDa)v, S = B R - 2 I  (D 1 -  ql) D~v, 

N 2 = - -  B R - 2 D I 2 v  

• : - -  R - 2  ( 1 2 D 2  2 -~ qlDa) w, T = - -  B - 2 l  (D 1 - -  ql) D2w, • = - -  R-2D12w 

( ,  = c z h  c = h / V ~ )  
( l : l ( x ) : a / x ,  ql = q l ( x ) = t / x ,  a : t / s i n 0 ) ,  (1,1) 

Here E is the elast ic  modulus, v is the coefficient of t r ansver se  expansion of the material ,  h is the 
constant thickness,  R is the radius of the base of the shell, D 1 and D 2 are opera tors  denoting single dif- 
ferentiat ions with respect  to the coordinates x and y, respect ively,  and 0 i s the  angle that the genera tors  
of the cone make with the axis of rotation. 

At the vertex (x = 0) of the shell we require that the static and geometr ica l  cha rac te r i s t i c s  of the de- 
formation,  determined by express ions  (1.1), be finite, and at its boundary (x=a) we prescr ibe  the following 
boundary conditions (M1 is the meridional  bending moment and Q1 is the meridional  t r ansve r se  s t ress ) :  

N 1 = 0, S = 0, M I = 0, Q1 = 0 or w =  0 (1.2) 

One of these two sys tems  of conditions determines  a free boundary (the case Q1 = 0), while the other 
(w=0) determines  a variant  of the case of a swivel=supported boundary. 

The problem consis ts  of the search  for special solutions of the original system, having the fo rm 

~',, (x, ?j, t) = ~ (x) ~,~ (~, t), w,~ (x, y, t) = x,, (x) , ,~ (y, t), 
%~ (y,t) = exp (iny + ioJt) (1.3) 

where n is an integer,  co is a real  number,  and i = r  

Inser t ion of express ions  (1.3) into V. Z. Vlasov ' s  equations resul ts  in the following sys tem of two 
ordinary differential equations for the functions qOn(X)and Xn(X): 
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P ~ n  + 21D12gn = O, 21Dl~r - -  ( P ~  - -  X) ~,, = 0 

(P~t = ~t2Ps(4) - -  2~t~tn/2P if) + I ~ l  4, p(4) = Q(~)Q('9, P(~) = 0.5 (Q(~) + l~Q(2}l ~ ) 

Q(~) = DI 2 + qlD1. • -~ 20}p R~ / btSE cos 0, ~t~ = 2C / B cos 0, ~t n = I~n2) (1.4) 

w h e r e  p i s  the d e n s i t y  of the  m a t e r i a l ,  and i n d i c e s  in  p a r e n t h e s e s  i nd i ca t e  the  o r d e r  of the  d i f f e r e n t i a l  o p e r -  
a t o r .  

Equa t i ons  (1.4) have a r e g u l a r  s i n g u l a r i t y  at  z e r o .  Only those  of t h e i r  so lu t i ons  t ha t  a r e  a n a l y t i c  at  
x = 0 have p h y s i c a l  m e a n i n g .  F r o m  (1.2) we have f o r  the b o u n d a r y  cond i t i ons  at  the po in t  x = a  

%, = 0, D~%, = 0, G~(~)X,, = 0, TX~ - -  (t ~ 7)G~o)X~ = 0 
(G (~) = Dx "2 + vqlDl, G2(3) = Dx (~P(a) - -  I~nD) - -  ~nl  "2 (l - -  ~) (D1 --  ql)) (1.5) 

Here  an  a u x i l i a r y  p a r a m e t e r ,  a s s u m i n g  the v a l u e s  0 and 1, has  b e e n  i n t r o d u c e d .  F o r  the c a s e s  when 
~/=0 we have Q I = 0 ,  i . e . ,  a f r e e  b o u n d a r y ,  and in  the  o t h e r  c a s e  we have w = 0 ,  i . e . ,  a s w i v e l - s u p p o r t e d  
b o u n d a r y .  

Solut ion of the p r o b l e m  on v i b r a t i o n s  of the s h e l l  u n d e r  c o n s i d e r a t i o n  i n v o l v e s  the d e t e r m i n a t i o n  of 
those  p o s i t i v e  e i g e n v a l u e s  ~m (m = 1, 2, 3 . . . .  ) of the s y s t e m  (1.4) which  c o r r e s p o n d  to the e igen func t ions  
~ n m  and ~nm, s a t i s f y i n g  the r e q u i r e d  c o n d i t i o n s .  

2. We r e s t r i c t  the  r ange  of va lue s  of the  g e o m e t r i c a l  p a r a m e t e r  p by  the cond i t i on  p2<< 1, t h e r e b y  
exc lud ing  s h e l l s  wi th  v e r y  m i l d  s l o p e s  f r o m  c o n s i d e r a t i o n .  At  the s a m e  t i m e  the quan t i ty  p~a 2 i s  not  n e c -  
e s s a r i l y  s m a l l ,  f o r  the  n u m b e r  n can  be a r b i t r a r i l y  l a r g e .  We a s s u m e  [2, 3] tha t  

n = C0~ -~ (~ ~0, c0 ~ i )  (2.1) 

The s y s t e m  (1.4) c o n s i s t s  of e q u a t i o n s  wi th  a s m a l l  p a r a m e t e r  m u l t i p l y i n g  the h i g h e s t - o r d e r  d e r i v a -  
t i v e s .  F o r  ~ = 0  i t  d e t e r m i n e s  a c e r t a i n  d e g e n e r a t e  s y s t e m ,  which  does  not  in  g e n e r a l  co inc ide  with  the s y s -  
t e m  of the  m o m e n t - f r e e  t h e o r y .  F o r  v a l u e s  ~ > l/2 the d e g e n e r a t e  s y s t e m  i s  t r i v i a l .  Se t t ing  th i s  c a s e  a s i d e  
f o r  the p r e s e n t ,  we r e s t r i c t  v a l u e s  of the p a r a m e t e r  ~ in (2.1) by  the cond i t i on  

0 ~ a ~-~ 1/~ (2.2) 

In th i s  d o m a i n  we d e t e r m i n e  a s y s t e m  of equa t ions  tha t  i s  s h o r t e n e d  as  c o m p a r e d  to  (1.4) 

p(2)(p o -5 2/D~Sxn ~ ---- 0, 21D ~% O _ (p(2) _ ~o) x , o  _--_ 0 

"" (P(~) = - -  2~.~nl~P (2) + ~tn~14) (2.3) 

which  d i f f e r s  f r o m  the d e g e n e r a t e  c a s e  only in t e r m s  tha t  van i sh  f o r  ~ 0. However ,  thanks  to t h e s e  t e r m s ,  
i t  p r e s e r v e s  the s s m e  s i n g u l a r i t y ,  ~nd c o n s e q u e n t l y  the s a m e  c h a r a c t e r  of the so lu t ion  at  z e r o  as  i s  p o s -  
s e s s e d  by  the ful l  s y s t e m  (1.4). 

The s h o r t e n e d  s y s t e m  (2.3) i s  of fou r th  o r d e r .  Th i s  i s  the  s a m e  o r d e r  as  tha t  of the s y s t e m  of the 
m o m e n t - f r e e  t h e o r y ,  which  fo l lows  f r o m  (2.3) when P(2) =- 0. In the  t r a n s i t i o n  f r o m  (1.4) to (2.3) we d ropped  
the h i g h e s t - o r d e r  d e r i v a t i v e s  wi th  s m a l l  p a r a m e t e r s  - those  t e r m s  which  g e n e r a t e  so lu t ions  of the  e d g e -  
e f f ec t  type. 

F r o m  r e s u l t s  of  [4] i t  fo l lows  tha t  a t  a su f f i c i en t  d i s t a n c e  f r o m  the po in t  x =a the  so lu t i on  of the s h o r t -  
ened  s y s t e m  d e t e r m i n e s  the  so lu t i on  of the  ful l  s y s t e m  wi th in  an  e r r o r  of o r d e r  not  e x c e e d i n g  ~2. In the 
n e i g h b o r h o o d  of the po in t  •  h o w e v e r ,  the d i f f e r e n c e  m a y  t u r n  out to be  s u b s t a n t i a l  in v iew of the fac t  
tha t  the  so lu t i on  of the  s h o r t e n e d  s y s t e m  does  not have a su f f i c i en t  d e g r e e  of a r b i t r a r i n e s s  f o r  the s a t i s -  
f ac t ion  of a l l  the b o u n d a r y  cond i t i ons .  D i s c r e p a n c i e s  tha t  a r i s e  can  be  c o m p e n s a t e d  by so lu t i ons  of the 
e d g e - e f f e c t  t ype .  

To deve lop  such  s o l u t i o n s  we " f r e e z e "  the c o e f f i c i e n t s  of Eqs .  (1.4) a t  s o m e  po in t  x = ~ ( 0  < ~ _ a ) ( see  
[5]). As a r e s u l t ,  we have a s y s t e m  of equa t i ons  wi th  c o n s t a n t  c o e f f i c i e n t s  

P ~ % ~  -5  21~D~%~ = O, 2 l~D~%~ - -  ( P ~  -- ~,) X~'= 0 

I n t r o d u c i n g  a func t ion  Zn(X), which  can  be  d i f f e r e n t i a t e d  a su f f i c i en t  n u m b e r  of t i m e s  and i s  such  tha t  

~ = - -  2l~Dx~z,~, X~ ---- Pt~z,~ (2.4) 

we r e d u c e  th i s  s y s t e m  to one e i g h t - o r d e r  d i f f e r e n t i a l  e q u a t i o n  
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k--1 

- -  - -  )~) ~1~ + ~t~l~  s, ~ ,~  - -  D1 ~ + ~ q~J (~) D~ j ( 2 . 5 )  
j=0 

it be ing poss ib l e  tha t  c e r t a i n  of the coef f i c ien t s  qij depend on pos i t ive  power s  of the p a r a m e t e r  p .  

We r equ i r e  that  the condi t ion 

q~ ~ 4l 2 -5 6bt2~t,~214 - -  ~ d  >~ 0(1) (2.6) 

holds ove r  the en t i r e  s egmen t  0 _<x-< a .  

Then  the degene ra t e  o p e r a t o r  Q~ (D I) will  be of four th  o r d e r  f o r  any ~ in the in te rva l  0 < ~ -<a. We 
ensu re  tha t  this condi t ion will  be fulf i l Ied by making  the fol lowing r e s t r i c t i o n  on the value of the p a r a m e t e r  
x [6]: 

)~ = 0 (~t-~), [3 < 2 (2.7) 

The characteristic equation Q~ (s)= 0 has eight roots: 

S~ (~, ~, Jl)and S~+ 4 (~, ~, ~t) = ~t-lrr (~,)~, ~t) (k = l, 2, 3, 4), 

S k and r k being analyt ic  funct ions  of the p a r a m e t e r / ~  (see L e m m a  1 of [5]). With an e r r o r  not exceed ing  
the o r d e r  of p ,  the values  r k a re  d e t e r m i n e d  f r o m  the a lgebra ic  equat ion  

r~ ~ +  q~(~) = O 

By vi r tue  of (2.6) we have IRe({rk})[->O(1), so  that  (for f ixed }) this  equa t ion  d e t e r m i n e s  four  p a i r -  
wise  conjugate  complex  n u m b e r s .  Two of t hem have negat ive ,  and two of t h e m  have pos i t ive  rea l  pa r t s .  
T h e r e f o r e  the degene ra t ion  of the o p e r a t o r  Q } (D 0 into an o p e r a t o r  of four th  o r d e r  is r e g u l a r  (in the sense  
of [5]) fo r  any 0 < } - < a .  

To each  of the values  r k the re  c o r r e s p o n d s  the p a r t i c u l a r  solut ion 

z~.~ (x) = exp (t~-~r~ (~) x) 

of Eq. (2.5). In t e r m s  of it we a lso  de t e rmine  a p a r t i c u l a r  solut ion of the or ig ina l  s y s t e m  (1.4) in the ne igh-  
bo rhood  of the point  x =~ with the aid of Eq. (2.4). Let  r~ and r 2 have posi t ive ,  and r 3 and ra have negat ive  
r ea l  p a r t s .  With ~ =a solut ions  that d e c r e a s e  with d is tance  f r o m  the boundary  c o r r e s p o n d  to the roo t s  p-~r~ 
and p-~r2, while those  that  i n c r e a s e  c o r r e s p o n d  to p - i t  3 and p-~r4. Consequent ly ,  only the f i r s t  two so lu-  
t ions  have the c h a r a c t e r  of an edge effect .  T h e r e f o r e  the gene ra l  solut ion of the edge -e f f ec t  type has the 
form 

2 

zn~ : ~, C~ exp (~-~% (a) (x --  a)) 

in the ne ighborhood  of the point  x = a .  

The funct ions  that  c o r r e s p o n d  to this 

~ = -- 2D~z,~, Z,~ ~ : P~z,~ (2.8) 

describe the rapidly-varying part of the solution of system (1.4). 

According to a theorem on asymptotic representation [4] we have 

if  only the funct ions  (Pnm o +gOnm I and Xnm ~ + Xnm I sa t i s fy  the boundary  condi t ions  (1.5) (Am ~ is a s imple  
eigenvalue of the shortened system, ~Onm o and X o are eigenfunctions, ~0nm I and Xnm I are edge-effect nrs 
types of solutions answering to the value X=Xm~ , and, in order of magnitude, the norm of the quantities 
6m, ~nm, ~?nm does not exceed the terms of the other term standing ahead of them in the corresponding 
expressions). There is the possibility of satisfying all the boundary conditions, as these functions contain 
four arbitrary constants: the solution of the system (2.3), subjected to the condition of analyticity at zero, 
gives two of them, and the solution of (2.8) gives the other two. 

We shall not attempt to separate the four conditions (1.5) into two pairs of such a charaeterthat, when 
one pair is assigned to the shortened system (2.3) and the other to the equation (2.5) for the edge effects, 

261 



the solutions of the equations can be determined sequentially without violating the asymptotic r epresen ta -  
tion (2.9). 

To separate out those conditions to which the general  solution of the edge-effect  type must  be sub- 
jected we make a substitution of (2,4) into (1.5)o Then the boundary conditions at the point x =a assume the 
fo rm 

Alz,~ = O, A~z,, = O, A 3 z  a = O, A4 ('~)z,, = 0 

(r = o, 1) 

(A1 = D,2, A2 = Dx 3, A3 = ~l~(2)P(4)--l~a' Aa (7) = iT - -  ( t  - -  7) Gin)] D(4)) (2.10) ~p-a 

As the coefficient of the last two boundary opera tors  depend on the smal l  pa r ame te r  ~, we use a 
modification [3] of the well-known rule for  separat ing boundary conditions [4, 7]. 

If the boundary conditions have the form ~ 
k 

A!~')z =- ~,  aijDlJz = 0 (~ = 1,2 . . . . .  1) 
~=~ 

(2.11) 

with aij =O(/~ij) ,  then, f i rs t  of all, they must not contain a small  pa ramete r  raised to a negative power, 
and this pa r ame te r  must not be a common factor  of some of the conditions. In other  words,  Eq. (2.11) must  
be replaced by 

~-~  A~k)z = 0, a l :  infj (~i) (2.12) 

Then the charac te r i s t i c  exponent 8ij of each t e r m  of (2.12) must be determined by the formula  

The boundary conditions have a canonical form if each of them is solved for  the t e rm with the la rges t  
charac te r i s t ic  exponent 8i =supj (8if) and if all of them are arranged in the order  of s t r ic t  increase in the i r  
la rges t  exponents. After the canonical form of the boundary conditions has been established, their  separa-  
tion is ca r r i ed  out according to the rule: we assign to the equation for the edge effects the same number 
of boundary conditions as it has par t icu lar  solutions of the edge-effect  type at a given boundary point. 
The remaining boundary conditions a re  assigned to the equations governing the slowly varying par t  of 
the solution. 

We turn immediately to condition (2.10). Assuming that 

vql (a) = vsinO = 0 (Ix~*) 

we determine their  la rges t  charac te r i s t i c  exponents 

7 - - 6 z  for T : O  
~1 = 2, ~ = 3, ~3 = inf( .... ) (6 -- 27, 6 -- 4:~ § ~o), ~a = 4 - -  4 ~  f o r  "~ = 1 

For  the values of ~ in (1.2) we have 

Since, in the case 7 = 0 (free boundary) the charac te r i s t ic  exponents 8a and 84 are always l a rge r  than 
81 and 8z, the last  two of conditions (1.5) must  be assigned to Eq. (2.5) or  to its solution (2.8) at the point 
x=a ,  while the f i rs t  two are assigned tO the sys tem (2.3). In the case 7 =1 (swivel-supported boundary) 
mat te rs  are somewhat more  complicated. For  0-<a< 1/4 the boundary conditions separate  in the same way 
as they do for  the case 7 = 0, but for  1/a<a< l/2 the charac te r i s t i c  exponents 82 and 83 are l a rge r  than 81 and 
84 so. that we must ass ign the second and third of conditions (1.5) to (2.5), while the f i r s t  and fourth are  
assigned to (2.3). 

Now we can give a final formulation of separat ion problems.  In writing down the boundary conditions 
for  the shortened sys tem we replace t n  with t n o  and Xn with Xn o in the corresponding conditions (1.5). 
This means that at the point x =a 

q~~ Dl~%~ for ~ = 0 ,  0~a<l /~andfor  T = I ,  0 ~ a < 1  h .  (2.13) 

% ~  ~ ~  for 7 = 1 ,  1/~<a<x/~ (2.14) 

(as before, we require  analyticity of the functions r o and Xn o at zero).  We obtain the boundary conditions 
for  the edge-effect  type of solution (2.8) f rom the corresponding conditions (1.5) by replacing t n  with ~n o + 
~VnI and Xn with Xn ~ + Xn I. As the result  we have at the point x =a 
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G(~) s ~ _ _ �9 ~,~ c~2>+C, c~%~J = c~>?+,, ~ fo~ 7 o, o ~ ~ < ~i~ ~,d 
for 7 = i ,  O~:z~ l /~  (2.15) 

D1%, s ----- - -  D1%, ~ C~2)7,,' = - -  a~2)X,,~ for T = 1, 1/4< ~ <  1'2 (2.16) 

From the asymptotic representation (2.9) it follows that when conditions (1.5) are satisfied the values 
Xm~ and the functions C ~  +(P~n, Xn~ + XInm determine the eigenvalues and the eigenfunctions of the full 
p r o b l e m  wi th in  an e r r o r  not  e x c e e d i n g  the o r d e r  p. If i t  i s  r e q u i r e d  only that  t h i s  e r r o r  van i sh  t o g e t h e r  
wi th  #, tha t  i s ,  if  one in tends  only tha t  the s o l u t i o n  have the a s y m p t o t i c  b e h a v i o r  of tha t  of the full  p r o b l e m ,  
then  the d o m a i n  of  v a l u e s  of the p a r a m e t e r  ~ c a n  be  w ide ne d  to the  r a n g e  0<-~<  1. In a l l  of th is  r e g i o n  the 
c h a r a c t e r i s t i c  equa t ion  Q} (s) =0 has  fou r  r o o t s  of the f o r m  p-~r  k and fou r  r o o t s  of l o w e r  o r d e r .  At  the 
po in t  x = a  two p a r t i c u l a r  s o l u t i o n s  of the  e d g e - e f f e c t  type  c o r r e s p o n d  to the f i r s t  r o o t s .  C o n s e q u e n t l y  the 
cond i t i ons ,  m a k i n g  i t  p o s s i b l e  to s e p a r a t e  the o r i g i n a l  s y s t e m  of e qua t i ons ,  a r e  fu l f i l l ed .  The  q u e s t i o n  con -  
c e r n i n g  the s e p a r a t i o n  of the b o u n d a r y  cond i t i ons  i s  r e s o l v e d ,  as  above ,  by d e t e r m i n i n g  t h e i r  c h a r a c t e r i s t i c  
e x p o n e n t s .  As we now have 

any of cond i t i ons  (2.10), which  m e a n s  any of c ond i t i ons  (1.5), c an  a p p e a r  as  b o u n d a r y  cond i t i ons  fo r  the  s y s -  
t e m  (2.3). 

3. The existence of solutions of the system (1.4) that not only diminish rapidly, but also grow rapidly 
with distance from the boundary, causes serious difficulties in the numerical integration of the system. 
D'fficulties of this kind arise in many boundary problems of shell theory. In some papers special methods 
are applied to cope with them. Thus, to this end, the method of suppression of rapidly increasing solutions 
is applied in [8 ], in [9 ] a modification of the pivotal condensation method is used, while [10] employs the method of 
orthogonalization. All these methods enable one to widen the domain of permissible values of the param- 
eter p to a greater or lesser degree; nevertheless they lose their effectiveness for sufficiently small values 
of the parameter. 

In contrast to these, the asymptotic method becomes more effective for smaller values of p. It sep- 
arates out in explicit form the rapidly-varying solutions that are unfavorable from the point of view of dif- 
ference approximations, and the application of numerical methods to the solution of the shortened (degen- 
erate) problem causes no difficulty as its solutions are smoother. Moreover, the order of the shortened 
system of equations is two less than that of the original system. 

As an illustration of the statements made above concerning the character of the solution of the short- 
ened problem we give the results of a numerical integration of the system (2.3) under the conditions (2.13) 
and (2.14) at the point x =a and the conditions ~0n~ = Xn ~ at the point x = 0. The results were obtained by the 
pivotal condensation method [i I ]. As an object for the calculation we took a conical shell with the geometric pa, 
rameters: (9 =7r/6 (i.e., a =2), p2 =1/200. 

The eigenvalues of the frequency parameter ho, calculated to third-place accuracy (which required 
no more than 50 coordinate steps), are given in Table I. 

The first row gives values of the waveform parameter n for which calculations were performed. The 
second and third rows give the first eigenvalues of the shortened problem with the boundary conditions (2.13) 
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~/-~4 
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g.g5 

g.r 

and (2.14) r e s p e c t i v e l y .  The  four th  row g i v e s  the s e c o n d  e i g e n v a l u e s ,  
c o r r e s p o n d i n g  to the b o u n d a r y  c ond i t i ons  (2.13). Al l  the e i g e n v a l u e $  
g iven  s a t i s f y  the cond i t ion  fl< 2. As n v a r i e s  f r o m  2 to 9, the p a r a m -  
e t e r  ~ v a r i e s  wi th in  the r a n g e  0.25 ~ ~ ~0 .65 .  F o r  a she l l  wi th  a f r e e  
b o u n d a r y  @ = 0) the b o u n d a r y  cond i t i ons ,  c o r r e s p o n d i n g  to the  s h o r t -  
ened  s y s t e m ,  have the f o r m  (2.13) t h roughou t  th i s  r a n g e .  T h e r e f o r e ,  
a l l  the n u m b e r s  g iven  in the s e c o n d  row can  be u n d e r s t o o d  as  ap -  
p r o x i m a t i o n s  to the e i g e n v a l u e s  of the ful l  p r o b l e m  7 = 0. F o r  a she l l  
wi th  a s w i v e l - s u p p o r t e d  b o u n d a r y  (5' = 1) the  b o u n d a r y  cond i t i ons  
have the f o r m  (2.14) in  the d o m a i n  0.25 < a ~  0.65.  F o r  (y ~ 0.25 the  
s h o r t e n e d  p r o b l e m  does  not  g ive  t h e  a s y m p t o t i c  b e h a v i o r  of t he  f u l l p r o b -  
l e m  e i t h e r  f o r  c ond i t i ons  (2.13) o r  fo r  (2.14).  The  va lue  n = 2 c o r r e s p o n d s  
to th i s  va lue  of a .  Consequen t ly ,  in the c a s e  7 = 1, the a p p r o x i m a t e  
e i g e n v a l u e s  of the ful l  p r o b l e m  a r e  the n u m b e r s  in the t h i r d  row, 
which  a n s w e r  to  v a l u e s  n - 3 .  
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TABLE 1 

n 2 3 4 5 7 9 
~a ~ 0.22 0.66 i. 50 2.94 8.70 20.6 
~.1 ~ 23.3 t5.5 t5.3 t8.3 30.9 55.0 
)~2 ~ 37.8 24.5 23.3 26.3 40.7 67.8 

Figures  1-3 give a graphical representa t ion of the 
eigenfunctions corresponding to the eigenvalues in Table 1. 
The curves of Fig. 1 correspond to values in the second row, 
those of Fig. 2 to values in the third row, and those of Fig. 3 
to values in the fourth row. The side of the figure on which 
the ordinates of the various curves are to be read off is in- 

dicated by the direct ion of the ar rows attached to the curves,  while the value of the pa rame te r  n to which a 
curve cor responds  is indicated by the number  over the arrow. 

A charac te r i s t i c  proper ty  of all the curves  represented is the occurrence  of inflection points, that is, 
points on ei ther  side of which the asymptotic representa t ion of the functions Cn ~ and ){n ~ is different. For  
example, as one moves to the left of the inflection point, the functions ){n ~ represented in Fig. 1, diminish 
exponentially, while to the right of the inflection point they increase l inearly with x. The inflection points 
themselves  are approximately determined by the intersect ion of the dashed lines [sic] with the axis of 
absc issae .  The inflection points of the functions Cn ~ in Fig. 1 andthe functions q~n o, X n ~ in Fig. 2 separate  branches 
of exponential fo rm f rom branches  of osci l la tory form.  With increasing values of the pa rame te r  n the in- 
flection points of both functions are displaced toward the boundary x =a,  the solution becoming increasingly 
localized in the neighborhood of the boundary. 
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